mirror of
https://akkoma.dev/AkkomaGang/akkoma.git
synced 2025-01-15 03:28:47 +00:00
6284e8f4b2
* I cretaed a folder 'development' * I split up the file dev.md into three parts and moved it to this folder * index.md * authentication_authorization.md * mrf.md * I also moved ap_extensions.md * I created a new file setting_up_pleroma_dev.md
268 lines
12 KiB
Markdown
268 lines
12 KiB
Markdown
# Installing on OpenBSD
|
||
|
||
This guide describes the installation and configuration of pleroma (and the required software to run it) on a single OpenBSD 6.6 server.
|
||
|
||
For any additional information regarding commands and configuration files mentioned here, check the man pages [online](https://man.openbsd.org/) or directly on your server with the man command.
|
||
|
||
#### Required software
|
||
|
||
The following packages need to be installed:
|
||
|
||
* elixir
|
||
* gmake
|
||
* git
|
||
* postgresql-server
|
||
* postgresql-contrib
|
||
* cmake
|
||
* ffmpeg
|
||
* ImageMagick
|
||
|
||
To install them, run the following command (with doas or as root):
|
||
|
||
```
|
||
pkg_add elixir gmake git postgresql-server postgresql-contrib cmake ffmpeg ImageMagick
|
||
```
|
||
|
||
Pleroma requires a reverse proxy, OpenBSD has relayd in base (and is used in this guide) and packages/ports are available for nginx (www/nginx) and apache (www/apache-httpd). Independently of the reverse proxy, [acme-client(1)](https://man.openbsd.org/acme-client) can be used to get a certificate from Let's Encrypt.
|
||
|
||
#### Optional software
|
||
|
||
Per [`docs/installation/optional/media_graphics_packages.md`](../installation/optional/media_graphics_packages.md):
|
||
* ImageMagick
|
||
* ffmpeg
|
||
* exiftool
|
||
|
||
To install the above:
|
||
|
||
```
|
||
pkg_add ImageMagick ffmpeg p5-Image-ExifTool
|
||
```
|
||
|
||
#### Creating the pleroma user
|
||
Pleroma will be run by a dedicated user, \_pleroma. Before creating it, insert the following lines in login.conf:
|
||
```
|
||
pleroma:\
|
||
:datasize-max=1536M:\
|
||
:datasize-cur=1536M:\
|
||
:openfiles-max=4096
|
||
```
|
||
This creates a "pleroma" login class and sets higher values than default for datasize and openfiles (see [login.conf(5)](https://man.openbsd.org/login.conf)), this is required to avoid having pleroma crash some time after starting.
|
||
|
||
Create the \_pleroma user, assign it the pleroma login class and create its home directory (/home/\_pleroma/): `useradd -m -L pleroma _pleroma`
|
||
|
||
#### Clone pleroma's directory
|
||
Enter a shell as the \_pleroma user. As root, run `su _pleroma -;cd`. Then clone the repository with `git clone -b stable https://git.pleroma.social/pleroma/pleroma.git`. Pleroma is now installed in /home/\_pleroma/pleroma/, it will be configured and started at the end of this guide.
|
||
|
||
#### PostgreSQL
|
||
Start a shell as the \_postgresql user (as root run `su _postgresql -` then run the `initdb` command to initialize postgresql:
|
||
You will need to specify pgdata directory to the default (/var/postgresql/data) with the `-D <path>` and set the user to postgres with the `-U <username>` flag. This can be done as follows:
|
||
|
||
```
|
||
initdb -D /var/postgresql/data -U postgres
|
||
```
|
||
If you are not using the default directory, you will have to update the `datadir` variable in the /etc/rc.d/postgresql script.
|
||
|
||
When this is done, enable postgresql so that it starts on boot and start it. As root, run:
|
||
```
|
||
rcctl enable postgresql
|
||
rcctl start postgresql
|
||
```
|
||
To check that it started properly and didn't fail right after starting, you can run `ps aux | grep postgres`, there should be multiple lines of output.
|
||
|
||
#### httpd
|
||
httpd will have three fuctions:
|
||
|
||
* redirect requests trying to reach the instance over http to the https URL
|
||
* serve a robots.txt file
|
||
* get Let's Encrypt certificates, with acme-client
|
||
|
||
Insert the following config in httpd.conf:
|
||
```
|
||
# $OpenBSD: httpd.conf,v 1.17 2017/04/16 08:50:49 ajacoutot Exp $
|
||
|
||
ext_inet="<IPv4 address>"
|
||
ext_inet6="<IPv6 address>"
|
||
|
||
server "default" {
|
||
listen on $ext_inet port 80 # Comment to disable listening on IPv4
|
||
listen on $ext_inet6 port 80 # Comment to disable listening on IPv6
|
||
listen on 127.0.0.1 port 80 # Do NOT comment this line
|
||
|
||
log syslog
|
||
directory no index
|
||
|
||
location "/.well-known/acme-challenge/*" {
|
||
root "/acme"
|
||
request strip 2
|
||
}
|
||
|
||
location "/robots.txt" { root "/htdocs/local/" }
|
||
location "/*" { block return 302 "https://$HTTP_HOST$REQUEST_URI" }
|
||
}
|
||
|
||
types {
|
||
}
|
||
```
|
||
Do not forget to change *<IPv4/6 address\>* to your server's address(es). If httpd should only listen on one protocol family, comment one of the two first *listen* options.
|
||
|
||
Create the /var/www/htdocs/local/ folder and write the content of your robots.txt in /var/www/htdocs/local/robots.txt.
|
||
Check the configuration with `httpd -n`, if it is OK enable and start httpd (as root):
|
||
```
|
||
rcctl enable httpd
|
||
rcctl start httpd
|
||
```
|
||
|
||
#### acme-client
|
||
acme-client is used to get SSL/TLS certificates from Let's Encrypt.
|
||
Insert the following configuration in /etc/acme-client.conf:
|
||
```
|
||
#
|
||
# $OpenBSD: acme-client.conf,v 1.4 2017/03/22 11:14:14 benno Exp $
|
||
#
|
||
|
||
authority letsencrypt-<domain name> {
|
||
#agreement url "https://letsencrypt.org/documents/LE-SA-v1.2-November-15-2017.pdf"
|
||
api url "https://acme-v02.api.letsencrypt.org/directory"
|
||
account key "/etc/acme/letsencrypt-privkey-<domain name>.pem"
|
||
}
|
||
|
||
domain <domain name> {
|
||
domain key "/etc/ssl/private/<domain name>.key"
|
||
domain certificate "/etc/ssl/<domain name>.crt"
|
||
domain full chain certificate "/etc/ssl/<domain name>.fullchain.pem"
|
||
sign with letsencrypt-<domain name>
|
||
challengedir "/var/www/acme/"
|
||
}
|
||
```
|
||
Replace *<domain name\>* by the domain name you'll use for your instance. As root, run `acme-client -n` to check the config, then `acme-client -ADv <domain name>` to create account and domain keys, and request a certificate for the first time.
|
||
Make acme-client run everyday by adding it in /etc/daily.local. As root, run the following command: `echo "acme-client <domain name>" >> /etc/daily.local`.
|
||
|
||
Relayd will look for certificates and keys based on the address it listens on (see next part), the easiest way to make them available to relayd is to create a link, as root run:
|
||
```
|
||
ln -s /etc/ssl/<domain name>.fullchain.pem /etc/ssl/<IP address>.crt
|
||
ln -s /etc/ssl/private/<domain name>.key /etc/ssl/private/<IP address>.key
|
||
```
|
||
This will have to be done for each IPv4 and IPv6 address relayd listens on.
|
||
|
||
#### relayd
|
||
relayd will be used as the reverse proxy sitting in front of pleroma.
|
||
Insert the following configuration in /etc/relayd.conf:
|
||
```
|
||
# $OpenBSD: relayd.conf,v 1.4 2018/03/23 09:55:06 claudio Exp $
|
||
|
||
ext_inet="<IPv4 address>"
|
||
ext_inet6="<IPv6 address>"
|
||
|
||
table <pleroma_server> { 127.0.0.1 }
|
||
table <httpd_server> { 127.0.0.1 }
|
||
|
||
http protocol plerup { # Protocol for upstream pleroma server
|
||
#tcp { nodelay, sack, socket buffer 65536, backlog 128 } # Uncomment and adjust as you see fit
|
||
tls ciphers "ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305"
|
||
tls ecdhe secp384r1
|
||
|
||
# Forward some paths to the local server (as pleroma won't respond to them as you might want)
|
||
pass request quick path "/robots.txt" forward to <httpd_server>
|
||
|
||
# Append a bunch of headers
|
||
match request header append "X-Forwarded-For" value "$REMOTE_ADDR" # This two header and the next one are not strictly required by pleroma but adding them won't hurt
|
||
match request header append "X-Forwarded-By" value "$SERVER_ADDR:$SERVER_PORT"
|
||
|
||
match response header append "X-XSS-Protection" value "1; mode=block"
|
||
match response header append "X-Permitted-Cross-Domain-Policies" value "none"
|
||
match response header append "X-Frame-Options" value "DENY"
|
||
match response header append "X-Content-Type-Options" value "nosniff"
|
||
match response header append "Referrer-Policy" value "same-origin"
|
||
match response header append "X-Download-Options" value "noopen"
|
||
match response header append "Content-Security-Policy" value "default-src 'none'; base-uri 'self'; form-action 'self'; img-src 'self' data: https:; media-src 'self' https:; style-src 'self' 'unsafe-inline'; font-src 'self'; script-src 'self'; connect-src 'self' wss://CHANGEME.tld; upgrade-insecure-requests;" # Modify "CHANGEME.tld" and set your instance's domain here
|
||
match request header append "Connection" value "upgrade"
|
||
#match response header append "Strict-Transport-Security" value "max-age=31536000; includeSubDomains" # Uncomment this only after you get HTTPS working.
|
||
|
||
# If you do not want remote frontends to be able to access your Pleroma backend server, comment these lines
|
||
match response header append "Access-Control-Allow-Origin" value "*"
|
||
match response header append "Access-Control-Allow-Methods" value "POST, PUT, DELETE, GET, PATCH, OPTIONS"
|
||
match response header append "Access-Control-Allow-Headers" value "Authorization, Content-Type, Idempotency-Key"
|
||
match response header append "Access-Control-Expose-Headers" value "Link, X-RateLimit-Reset, X-RateLimit-Limit, X-RateLimit-Remaining, X-Request-Id"
|
||
# Stop commenting lines here
|
||
}
|
||
|
||
relay wwwtls {
|
||
listen on $ext_inet port https tls # Comment to disable listening on IPv4
|
||
listen on $ext_inet6 port https tls # Comment to disable listening on IPv6
|
||
|
||
protocol plerup
|
||
|
||
forward to <pleroma_server> port 4000 check http "/" code 200
|
||
forward to <httpd_server> port 80 check http "/robots.txt" code 200
|
||
}
|
||
```
|
||
Again, change *<IPv4/6 address\>* to your server's address(es) and comment one of the two *listen* options if needed. Also change *wss://CHANGEME.tld* to *wss://<your instance's domain name\>*.
|
||
Check the configuration with `relayd -n`, if it is OK enable and start relayd (as root):
|
||
```
|
||
rcctl enable relayd
|
||
rcctl start relayd
|
||
```
|
||
|
||
#### pf
|
||
Enabling and configuring pf is highly recommended.
|
||
In /etc/pf.conf, insert the following configuration:
|
||
```
|
||
# Macros
|
||
if="<network interface>"
|
||
authorized_ssh_clients="any"
|
||
|
||
# Skip traffic on loopback interface
|
||
set skip on lo
|
||
|
||
# Default behavior
|
||
set block-policy drop
|
||
block in log all
|
||
pass out quick
|
||
|
||
# Security features
|
||
match in all scrub (no-df random-id)
|
||
block in log from urpf-failed
|
||
|
||
# Rules
|
||
pass in quick on $if inet proto icmp to ($if) icmp-type { echoreq unreach paramprob trace } # ICMP
|
||
pass in quick on $if inet6 proto icmp6 to ($if) icmp6-type { echoreq unreach paramprob timex toobig } # ICMPv6
|
||
pass in quick on $if proto tcp to ($if) port { http https } # relayd/httpd
|
||
pass in quick on $if proto tcp from $authorized_ssh_clients to ($if) port ssh
|
||
```
|
||
Replace *<network interface\>* by your server's network interface name (which you can get with ifconfig). Consider replacing the content of the authorized\_ssh\_clients macro by, for exemple, your home IP address, to avoid SSH connection attempts from bots.
|
||
|
||
Check pf's configuration by running `pfctl -nf /etc/pf.conf`, load it with `pfctl -f /etc/pf.conf` and enable pf at boot with `rcctl enable pf`.
|
||
|
||
#### Configure and start pleroma
|
||
Enter a shell as \_pleroma (as root `su _pleroma -`) and enter pleroma's installation directory (`cd ~/pleroma/`).
|
||
|
||
Then follow the main installation guide:
|
||
|
||
* run `mix deps.get`
|
||
* run `mix pleroma.instance gen` and enter your instance's information when asked
|
||
* copy config/generated\_config.exs to config/prod.secret.exs. The default values should be sufficient but you should edit it and check that everything seems OK.
|
||
* exit your current shell back to a root one and run `psql -U postgres -f /home/_pleroma/pleroma/config/setup_db.psql` to setup the database.
|
||
* return to a \_pleroma shell into pleroma's installation directory (`su _pleroma -;cd ~/pleroma`) and run `MIX_ENV=prod mix ecto.migrate`
|
||
|
||
As \_pleroma in /home/\_pleroma/pleroma, you can now run `LC_ALL=en_US.UTF-8 MIX_ENV=prod mix phx.server` to start your instance.
|
||
In another SSH session/tmux window, check that it is working properly by running `ftp -MVo - http://127.0.0.1:4000/api/v1/instance`, you should get json output. Double-check that *uri*'s value is your instance's domain name.
|
||
|
||
##### Starting pleroma at boot
|
||
An rc script to automatically start pleroma at boot hasn't been written yet, it can be run in a tmux session (tmux is in base).
|
||
|
||
|
||
#### Create administrative user
|
||
|
||
If your instance is up and running, you can create your first user with administrative rights with the following command as the \_pleroma user.
|
||
```
|
||
LC_ALL=en_US.UTF-8 MIX_ENV=prod mix pleroma.user new <username> <your@emailaddress> --admin
|
||
```
|
||
|
||
#### Further reading
|
||
|
||
{! backend/installation/further_reading.include !}
|
||
|
||
## Questions
|
||
|
||
Questions about the installation or didn’t it work as it should be, ask in [#pleroma:matrix.org](https://matrix.heldscal.la/#/room/#freenode_#pleroma:matrix.org) or IRC Channel **#pleroma** on **Freenode**.
|