mirror of
https://codeberg.org/forgejo/forgejo.git
synced 2024-11-30 00:01:24 +00:00
481 lines
12 KiB
Go
Vendored
481 lines
12 KiB
Go
Vendored
package chroma
|
|
|
|
import (
|
|
"fmt"
|
|
"os"
|
|
"regexp"
|
|
"strings"
|
|
"sync"
|
|
"time"
|
|
"unicode/utf8"
|
|
|
|
"github.com/dlclark/regexp2"
|
|
)
|
|
|
|
// A Rule is the fundamental matching unit of the Regex lexer state machine.
|
|
type Rule struct {
|
|
Pattern string
|
|
Type Emitter
|
|
Mutator Mutator
|
|
}
|
|
|
|
// An Emitter takes group matches and returns tokens.
|
|
type Emitter interface {
|
|
// Emit tokens for the given regex groups.
|
|
Emit(groups []string, lexer Lexer) Iterator
|
|
}
|
|
|
|
// EmitterFunc is a function that is an Emitter.
|
|
type EmitterFunc func(groups []string, lexer Lexer) Iterator
|
|
|
|
// Emit tokens for groups.
|
|
func (e EmitterFunc) Emit(groups []string, lexer Lexer) Iterator { return e(groups, lexer) }
|
|
|
|
// ByGroups emits a token for each matching group in the rule's regex.
|
|
func ByGroups(emitters ...Emitter) Emitter {
|
|
return EmitterFunc(func(groups []string, lexer Lexer) Iterator {
|
|
iterators := make([]Iterator, 0, len(groups)-1)
|
|
if len(emitters) != len(groups)-1 {
|
|
iterators = append(iterators, Error.Emit(groups, lexer))
|
|
// panic(errors.Errorf("number of groups %q does not match number of emitters %v", groups, emitters))
|
|
} else {
|
|
for i, group := range groups[1:] {
|
|
iterators = append(iterators, emitters[i].Emit([]string{group}, lexer))
|
|
}
|
|
}
|
|
return Concaterator(iterators...)
|
|
})
|
|
}
|
|
|
|
// UsingByGroup emits tokens for the matched groups in the regex using a
|
|
// "sublexer". Used when lexing code blocks where the name of a sublexer is
|
|
// contained within the block, for example on a Markdown text block or SQL
|
|
// language block.
|
|
//
|
|
// The sublexer will be retrieved using sublexerGetFunc (typically
|
|
// internal.Get), using the captured value from the matched sublexerNameGroup.
|
|
//
|
|
// If sublexerGetFunc returns a non-nil lexer for the captured sublexerNameGroup,
|
|
// then tokens for the matched codeGroup will be emitted using the retrieved
|
|
// lexer. Otherwise, if the sublexer is nil, then tokens will be emitted from
|
|
// the passed emitter.
|
|
//
|
|
// Example:
|
|
//
|
|
// var Markdown = internal.Register(MustNewLexer(
|
|
// &Config{
|
|
// Name: "markdown",
|
|
// Aliases: []string{"md", "mkd"},
|
|
// Filenames: []string{"*.md", "*.mkd", "*.markdown"},
|
|
// MimeTypes: []string{"text/x-markdown"},
|
|
// },
|
|
// Rules{
|
|
// "root": {
|
|
// {"^(```)(\\w+)(\\n)([\\w\\W]*?)(^```$)",
|
|
// UsingByGroup(
|
|
// internal.Get,
|
|
// 2, 4,
|
|
// String, String, String, Text, String,
|
|
// ),
|
|
// nil,
|
|
// },
|
|
// },
|
|
// },
|
|
// ))
|
|
//
|
|
// See the lexers/m/markdown.go for the complete example.
|
|
//
|
|
// Note: panic's if the number emitters does not equal the number of matched
|
|
// groups in the regex.
|
|
func UsingByGroup(sublexerGetFunc func(string) Lexer, sublexerNameGroup, codeGroup int, emitters ...Emitter) Emitter {
|
|
return EmitterFunc(func(groups []string, lexer Lexer) Iterator {
|
|
// bounds check
|
|
if len(emitters) != len(groups)-1 {
|
|
panic("UsingByGroup expects number of emitters to be the same as len(groups)-1")
|
|
}
|
|
|
|
// grab sublexer
|
|
sublexer := sublexerGetFunc(groups[sublexerNameGroup])
|
|
|
|
// build iterators
|
|
iterators := make([]Iterator, len(groups)-1)
|
|
for i, group := range groups[1:] {
|
|
if i == codeGroup-1 && sublexer != nil {
|
|
var err error
|
|
iterators[i], err = sublexer.Tokenise(nil, groups[codeGroup])
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
} else {
|
|
iterators[i] = emitters[i].Emit([]string{group}, lexer)
|
|
}
|
|
}
|
|
|
|
return Concaterator(iterators...)
|
|
})
|
|
}
|
|
|
|
// Using returns an Emitter that uses a given Lexer for parsing and emitting.
|
|
func Using(lexer Lexer) Emitter {
|
|
return EmitterFunc(func(groups []string, _ Lexer) Iterator {
|
|
it, err := lexer.Tokenise(&TokeniseOptions{State: "root", Nested: true}, groups[0])
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return it
|
|
})
|
|
}
|
|
|
|
// UsingSelf is like Using, but uses the current Lexer.
|
|
func UsingSelf(state string) Emitter {
|
|
return EmitterFunc(func(groups []string, lexer Lexer) Iterator {
|
|
it, err := lexer.Tokenise(&TokeniseOptions{State: state, Nested: true}, groups[0])
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return it
|
|
})
|
|
}
|
|
|
|
// Words creates a regex that matches any of the given literal words.
|
|
func Words(prefix, suffix string, words ...string) string {
|
|
for i, word := range words {
|
|
words[i] = regexp.QuoteMeta(word)
|
|
}
|
|
return prefix + `(` + strings.Join(words, `|`) + `)` + suffix
|
|
}
|
|
|
|
// Tokenise text using lexer, returning tokens as a slice.
|
|
func Tokenise(lexer Lexer, options *TokeniseOptions, text string) ([]Token, error) {
|
|
var out []Token
|
|
it, err := lexer.Tokenise(options, text)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
for t := it(); t != EOF; t = it() {
|
|
out = append(out, t)
|
|
}
|
|
return out, nil
|
|
}
|
|
|
|
// Rules maps from state to a sequence of Rules.
|
|
type Rules map[string][]Rule
|
|
|
|
// Rename clones rules then a rule.
|
|
func (r Rules) Rename(old, new string) Rules {
|
|
r = r.Clone()
|
|
r[new] = r[old]
|
|
delete(r, old)
|
|
return r
|
|
}
|
|
|
|
// Clone returns a clone of the Rules.
|
|
func (r Rules) Clone() Rules {
|
|
out := map[string][]Rule{}
|
|
for key, rules := range r {
|
|
out[key] = make([]Rule, len(rules))
|
|
copy(out[key], rules)
|
|
}
|
|
return out
|
|
}
|
|
|
|
// Merge creates a clone of "r" then merges "rules" into the clone.
|
|
func (r Rules) Merge(rules Rules) Rules {
|
|
out := r.Clone()
|
|
for k, v := range rules.Clone() {
|
|
out[k] = v
|
|
}
|
|
return out
|
|
}
|
|
|
|
// MustNewLexer creates a new Lexer or panics.
|
|
func MustNewLexer(config *Config, rules Rules) *RegexLexer {
|
|
lexer, err := NewLexer(config, rules)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
return lexer
|
|
}
|
|
|
|
// NewLexer creates a new regex-based Lexer.
|
|
//
|
|
// "rules" is a state machine transitition map. Each key is a state. Values are sets of rules
|
|
// that match input, optionally modify lexer state, and output tokens.
|
|
func NewLexer(config *Config, rules Rules) (*RegexLexer, error) {
|
|
if config == nil {
|
|
config = &Config{}
|
|
}
|
|
if _, ok := rules["root"]; !ok {
|
|
return nil, fmt.Errorf("no \"root\" state")
|
|
}
|
|
compiledRules := map[string][]*CompiledRule{}
|
|
for state, rules := range rules {
|
|
compiledRules[state] = nil
|
|
for _, rule := range rules {
|
|
flags := ""
|
|
if !config.NotMultiline {
|
|
flags += "m"
|
|
}
|
|
if config.CaseInsensitive {
|
|
flags += "i"
|
|
}
|
|
if config.DotAll {
|
|
flags += "s"
|
|
}
|
|
compiledRules[state] = append(compiledRules[state], &CompiledRule{Rule: rule, flags: flags})
|
|
}
|
|
}
|
|
return &RegexLexer{
|
|
config: config,
|
|
rules: compiledRules,
|
|
}, nil
|
|
}
|
|
|
|
// Trace enables debug tracing.
|
|
func (r *RegexLexer) Trace(trace bool) *RegexLexer {
|
|
r.trace = trace
|
|
return r
|
|
}
|
|
|
|
// A CompiledRule is a Rule with a pre-compiled regex.
|
|
//
|
|
// Note that regular expressions are lazily compiled on first use of the lexer.
|
|
type CompiledRule struct {
|
|
Rule
|
|
Regexp *regexp2.Regexp
|
|
flags string
|
|
}
|
|
|
|
// CompiledRules is a map of rule name to sequence of compiled rules in that rule.
|
|
type CompiledRules map[string][]*CompiledRule
|
|
|
|
// LexerState contains the state for a single lex.
|
|
type LexerState struct {
|
|
Lexer *RegexLexer
|
|
Text []rune
|
|
Pos int
|
|
Rules CompiledRules
|
|
Stack []string
|
|
State string
|
|
Rule int
|
|
// Group matches.
|
|
Groups []string
|
|
// Custum context for mutators.
|
|
MutatorContext map[interface{}]interface{}
|
|
iteratorStack []Iterator
|
|
options *TokeniseOptions
|
|
}
|
|
|
|
// Set mutator context.
|
|
func (l *LexerState) Set(key interface{}, value interface{}) {
|
|
l.MutatorContext[key] = value
|
|
}
|
|
|
|
// Get mutator context.
|
|
func (l *LexerState) Get(key interface{}) interface{} {
|
|
return l.MutatorContext[key]
|
|
}
|
|
|
|
// Iterator returns the next Token from the lexer.
|
|
func (l *LexerState) Iterator() Token { // nolint: gocognit
|
|
for l.Pos < len(l.Text) && len(l.Stack) > 0 {
|
|
// Exhaust the iterator stack, if any.
|
|
for len(l.iteratorStack) > 0 {
|
|
n := len(l.iteratorStack) - 1
|
|
t := l.iteratorStack[n]()
|
|
if t == EOF {
|
|
l.iteratorStack = l.iteratorStack[:n]
|
|
continue
|
|
}
|
|
return t
|
|
}
|
|
|
|
l.State = l.Stack[len(l.Stack)-1]
|
|
if l.Lexer.trace {
|
|
fmt.Fprintf(os.Stderr, "%s: pos=%d, text=%q\n", l.State, l.Pos, string(l.Text[l.Pos:]))
|
|
}
|
|
selectedRule, ok := l.Rules[l.State]
|
|
if !ok {
|
|
panic("unknown state " + l.State)
|
|
}
|
|
ruleIndex, rule, groups := matchRules(l.Text, l.Pos, selectedRule)
|
|
// No match.
|
|
if groups == nil {
|
|
// From Pygments :\
|
|
//
|
|
// If the RegexLexer encounters a newline that is flagged as an error token, the stack is
|
|
// emptied and the lexer continues scanning in the 'root' state. This can help producing
|
|
// error-tolerant highlighting for erroneous input, e.g. when a single-line string is not
|
|
// closed.
|
|
if l.Text[l.Pos] == '\n' && l.State != l.options.State {
|
|
l.Stack = []string{l.options.State}
|
|
continue
|
|
}
|
|
l.Pos++
|
|
return Token{Error, string(l.Text[l.Pos-1 : l.Pos])}
|
|
}
|
|
l.Rule = ruleIndex
|
|
l.Groups = groups
|
|
l.Pos += utf8.RuneCountInString(groups[0])
|
|
if rule.Mutator != nil {
|
|
if err := rule.Mutator.Mutate(l); err != nil {
|
|
panic(err)
|
|
}
|
|
}
|
|
if rule.Type != nil {
|
|
l.iteratorStack = append(l.iteratorStack, rule.Type.Emit(l.Groups, l.Lexer))
|
|
}
|
|
}
|
|
// Exhaust the IteratorStack, if any.
|
|
// Duplicate code, but eh.
|
|
for len(l.iteratorStack) > 0 {
|
|
n := len(l.iteratorStack) - 1
|
|
t := l.iteratorStack[n]()
|
|
if t == EOF {
|
|
l.iteratorStack = l.iteratorStack[:n]
|
|
continue
|
|
}
|
|
return t
|
|
}
|
|
|
|
// If we get to here and we still have text, return it as an error.
|
|
if l.Pos != len(l.Text) && len(l.Stack) == 0 {
|
|
value := string(l.Text[l.Pos:])
|
|
l.Pos = len(l.Text)
|
|
return Token{Type: Error, Value: value}
|
|
}
|
|
return EOF
|
|
}
|
|
|
|
// RegexLexer is the default lexer implementation used in Chroma.
|
|
type RegexLexer struct {
|
|
config *Config
|
|
analyser func(text string) float32
|
|
trace bool
|
|
|
|
mu sync.Mutex
|
|
compiled bool
|
|
rules map[string][]*CompiledRule
|
|
}
|
|
|
|
// SetAnalyser sets the analyser function used to perform content inspection.
|
|
func (r *RegexLexer) SetAnalyser(analyser func(text string) float32) *RegexLexer {
|
|
r.analyser = analyser
|
|
return r
|
|
}
|
|
|
|
func (r *RegexLexer) AnalyseText(text string) float32 { // nolint
|
|
if r.analyser != nil {
|
|
return r.analyser(text)
|
|
}
|
|
return 0.0
|
|
}
|
|
|
|
func (r *RegexLexer) Config() *Config { // nolint
|
|
return r.config
|
|
}
|
|
|
|
// Regex compilation is deferred until the lexer is used. This is to avoid significant init() time costs.
|
|
func (r *RegexLexer) maybeCompile() (err error) {
|
|
r.mu.Lock()
|
|
defer r.mu.Unlock()
|
|
if r.compiled {
|
|
return nil
|
|
}
|
|
for state, rules := range r.rules {
|
|
for i, rule := range rules {
|
|
if rule.Regexp == nil {
|
|
pattern := "(?:" + rule.Pattern + ")"
|
|
if rule.flags != "" {
|
|
pattern = "(?" + rule.flags + ")" + pattern
|
|
}
|
|
pattern = `\G` + pattern
|
|
rule.Regexp, err = regexp2.Compile(pattern, 0)
|
|
if err != nil {
|
|
return fmt.Errorf("failed to compile rule %s.%d: %s", state, i, err)
|
|
}
|
|
rule.Regexp.MatchTimeout = time.Millisecond * 250
|
|
}
|
|
}
|
|
}
|
|
restart:
|
|
seen := map[LexerMutator]bool{}
|
|
for state := range r.rules {
|
|
for i := 0; i < len(r.rules[state]); i++ {
|
|
rule := r.rules[state][i]
|
|
if compile, ok := rule.Mutator.(LexerMutator); ok {
|
|
if seen[compile] {
|
|
return fmt.Errorf("saw mutator %T twice; this should not happen", compile)
|
|
}
|
|
seen[compile] = true
|
|
if err := compile.MutateLexer(r.rules, state, i); err != nil {
|
|
return err
|
|
}
|
|
// Process the rules again in case the mutator added/removed rules.
|
|
//
|
|
// This sounds bad, but shouldn't be significant in practice.
|
|
goto restart
|
|
}
|
|
}
|
|
}
|
|
r.compiled = true
|
|
return nil
|
|
}
|
|
|
|
func (r *RegexLexer) Tokenise(options *TokeniseOptions, text string) (Iterator, error) { // nolint
|
|
if err := r.maybeCompile(); err != nil {
|
|
return nil, err
|
|
}
|
|
if options == nil {
|
|
options = defaultOptions
|
|
}
|
|
if options.EnsureLF {
|
|
text = ensureLF(text)
|
|
}
|
|
if !options.Nested && r.config.EnsureNL && !strings.HasSuffix(text, "\n") {
|
|
text += "\n"
|
|
}
|
|
state := &LexerState{
|
|
options: options,
|
|
Lexer: r,
|
|
Text: []rune(text),
|
|
Stack: []string{options.State},
|
|
Rules: r.rules,
|
|
MutatorContext: map[interface{}]interface{}{},
|
|
}
|
|
return state.Iterator, nil
|
|
}
|
|
|
|
func matchRules(text []rune, pos int, rules []*CompiledRule) (int, *CompiledRule, []string) {
|
|
for i, rule := range rules {
|
|
match, err := rule.Regexp.FindRunesMatchStartingAt(text, pos)
|
|
if match != nil && err == nil && match.Index == pos {
|
|
groups := []string{}
|
|
for _, g := range match.Groups() {
|
|
groups = append(groups, g.String())
|
|
}
|
|
return i, rule, groups
|
|
}
|
|
}
|
|
return 0, &CompiledRule{}, nil
|
|
}
|
|
|
|
// replace \r and \r\n with \n
|
|
// same as strings.ReplaceAll but more efficient
|
|
func ensureLF(text string) string {
|
|
buf := make([]byte, len(text))
|
|
var j int
|
|
for i := 0; i < len(text); i++ {
|
|
c := text[i]
|
|
if c == '\r' {
|
|
if i < len(text)-1 && text[i+1] == '\n' {
|
|
continue
|
|
}
|
|
c = '\n'
|
|
}
|
|
buf[j] = c
|
|
j++
|
|
}
|
|
return string(buf[:j])
|
|
}
|